Matías del Hoyo, PhD
Universidad de Buenos Aires
Argentina
Sábado 29 de Mayo
Hora: 11:00 a.m
Salón por confirmar
Una categoría (pequeña) es una estructura algebraica-combinatoria. Consta de un conjunto de objetos y de flechas entre ellos, junto con una ley de composición de finida sobre las flechas. Las categorías generalizan y permiten dar un trato unificado a posets, grupos y grafos entre otros. Toda categoría C tiene asociado un espacio topológico BC, su espacio clasificante, que se construye a partir del nervio NC. Sigue de un resultado clásico de Quillen que todo espacio X puede ser obtenido (salvo homotopía) como el espacio clasificante de alguna C. Esta construcción establece una rica interacción entre estructuras categóricas y tipos de homotopía. En esta charla revisaremos los aspectos principales de la teoría, y discutiremos las construcciones de nervios para categorías fibradas y 2-categorías.
lunes, 19 de abril de 2010
Suscribirse a:
Enviar comentarios (Atom)
No hay comentarios:
Publicar un comentario
Nota: solo los miembros de este blog pueden publicar comentarios.